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INTRODUCTION 

AN ANALYSIS of the flow about a porous-surfaced rotating 
disk is performed in which account is taken of velocity slip 
at the porous bounding surface. The flow field within the 
porous material is also analyzed. Results showing the effect 
of velocity slip on the torque due to surface shear and on 

the velocity field are presented. 
Although the no-slip boundary condition is widely 

utilized for fluid flows bounded by porous walls, recent 
experiments [l, 21 have verified the existence of a slip 
velocity. The experiments were performed in a parallel-plate 
channel with water and oil as the working fluids. The magni- 
tude of the slip velocity was as high as 60 per cent of the mean 
velocity in some cases [Z]. A macroscopic model for the slip 
velocity led to analytical predictions which were in excellent 
agreement with the experimental results [2], thereby lending 
support to the model. The same slip model will be used here 
in the analysis of the rotating disk. 

A schematic diagram of the situation under study is 

pictured in the inset of Fig. 1. The rotating disk consists of a 
porous material backed by a solid wall. The disk is situated 
in an otherwise quiescent fluid environment. The porous 
material has thickness t and is assumed to be homogeneous 
and isotropic. 

ANALYSIS 

Consideration is tirst given to the porous material with 
a view to exploring the possible existence of a flow normal 
to the surface z = 0 (i.e. possible injection or suction). The 
flow field in the bulk of a porous medium is governed by 
Darcy’s law provided that inertial effects within the medium 
are negligible, as will be shown to be the case in the present 
problem The representation of Darcy’s law appropriate to 
the porous rotating disk is 

v, = - (k/pXapiar), V, - rw = - (kirp) @p/@). 

V: = - (k/p)(ap/az) (1) 

FIG. 1. Effect of velocity slip on torque. 
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where V,, V, and Vz arc with respect to fixed coordinates. 

and k is the permeability. In addition. the continuity equation 

is 

a(rV,) av+ _._+_+!!!!!=O 
& a+ 

It may be observed that an equivalent statement of equations 

(1) and (2) is V’p = 0. 

The tangential velocity V+ is equal to ro since p is inde- 

pendent of 4 (as are all other dependent variables). It is well 

established that the flow external to the disk obeys a simi- 

larity solution, and it is natural also to seek a similarity 

solution for the fIow within the porous material. Consistent 

with the first and third members of (1). the similarity solution 

has the form 

V, = f(r). v, = h(Z) (3) 

and to satisfy (2) 

rV , = c,r2i2 -I- c 2. v; = - clz + c,. (4) 

The integration constants appearing in equation (4) may 

be determined by employing the conditions: (a) Vz = 0 at 

z = --t; (b) p (and. consequently. ap/ar) is continuous at 
z= 0. The first of these conditions yields cg = -cit. In 

connection with the second condition, it may be noted that 

ap/& = 0 in the flow external to the disk. Therefore. from 

the first members of (1) and (4). it follows that c,rZ/2 + c2 
= 0. so that ci = c2 = 0 and. from above. c3 = 0. Then. 

from the second of (4). it is seen that Vz = 0 within the bulk 

of the porous material. 

Next. attention may be turned to the flow held external 

to the rotating disk. The starting point of the analysis is the 

complete Navier-Stokes equations and the continuity 

equation for steady. three-dimensional incompressible flow. 

A similarity solution for the velocity field may be sought in 

the form [3] 

V, = rtuF(tf): v, = rtoG(?/): 

v; = (tov)fH(ty): ‘I = z(w!v)+ (5) 

the substitution of which into the aforementioned conserva- 

tion equations yields 

H”’ = HH” - (H’)‘!2 + 2G2. G” zz HG’ - H’G (6) 

with the auxiliary relation 

H’ = - 2F. (7) 

The boundary conditions will now be discussed. At the 

disk surface. the existence of a slip velocity is connected 

with the presence of a thin layer of moving fluid just beneath 

the surface of the porous material (in effect. a thin boundary 

* Vz is not identically zero at z = 0 since V, # 0 at 

Z = 0. 

layer). The fluid in this layer is pulled along (or retarded) by 

the flow external to the porous medium. The magnitude of 

the slip velocity depends on the properties of the porous 

material as well as on the magnitude of the velocity gradient 

which acts on the porous material. To characterize the slip 
velocities. the model that was previously employed in [l] 

and [2] is used 

(8) 

in which a is a dimensionless constant which depends on the 

porous material. At present, a is determined by experiment. 

as is the permeability k. For example, for the porous material 

of[2],k = 5.1 x lo-‘cm*anda =O,l. 

In view of the already demonstrated result that V; = 0 

within the bulk of the porous material and of the thinness of 

the aforementioned slip boundary layer. it is reasonable to 

take Vz = 0 at the disk surface.* In the external flow. far 

from the disk surface. V, -+ 0 and V, + 0. 
When the boundary conditions are recast into dimension- 

less form with the aid of equations (5) and (7). there follows 

r/=0: H=O. H’ = wwtHct 
a 

G=, +!!!?!“G’ (9) 
cl 

q-r: H’ -+ 0. G + 0. (10) 

The quantity (kw/v))/a is a slip grouping. When this grouping 

is zero. the boundary conditions reduce to those for the 

no-slip case. 

The mathematical system consisting of equations (6). (9) 

and (10). is a two-point boundary value problem with a 

prescribable parameter (kw,;v)*.‘ct. Solutions were carried out 

by a forward integration technique on a CDC 6600 digital 

computer. 

RESULTS AND DISCUSSION 

The quantity which is, perhaps, of most direct technological 

interest is the shaft torque required to maintain steady 

rotation of the disk. This quantity is most conveniently 

determined by making use of a control volume having a 

surface which coincides with the plane ; = 0. This choice 

permits the evaluation of the torque from a knowledge of 

the flow field external to the rotating disk, no consideration 

of the details of the flow within the disk being required. The 

tangential shear rZ# acting on the plane z = 0 is expressible 

as pr(vto’)~G’(O). and. with this. the torque A4 associated 

with the region 0 < r < rn is 

A4 = - ‘[rrz,2nr dr = =&r$(w?)~[ - G’(O)] (11) 
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FIG. 2. Representative tangential and axial velocity profiles. 

or. in terms of a dimensionless torque coefficient C,. 

C, = M/pr&~~)+ = (n/Z)[ - G’(O)]. (14 

The effect of velocity slip on the torque coefficient is 

shown in Fig. 1. The ordinate variable compares the torque 

in the presence of velocity slip to the torque in the absence 

of slip (the subscript 0 denotes zero slip). The abscissa is the 

slip grouping @&))/a. The figure indicates that substantial 

reductions in torque may occur as a result of slip. This finding 

suggests that for rotating components in general, it might 

be advantageous to purposefully design with the objective of 

accentuating velocity slip. 

Further insights into the effects of slip are afforded by 

examination of representative velocity profiles. Figure 2 

contains information on the tangential and axial velocity 

components (V+ and V,, respectively) plotted as a function 

of the axial coordinate z. In general. V, decreases mono- 

tonically with increasing distance from the disk surface. 

while - V, increases in the direction normal to the surface. 

The velocity slip is evidenced by the fact that V, -c ro at 

z = 0. The extent of the tangential velocity slip increases 
with increasing values of the slip grouping. Since the 

tangential shear at the wall is proportional to the correspond- 

ing velocity gradient, the decrease in shear associated with 

velocity slip is readily apparent. The axial velocity held is 

not markedly affected by the slip in V, and I’,. FIG. 3. Representative radial velocity profiles. 
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Representative radial velocity profiles are presented in 
Fig. 3. In general V, is seen to increase with increasing z 
in the neighbourhood of the wall, attain a maximum, and 
then to decay asymptotically to zero at large z. The effect of 
slip is to diminish somewhat the magnitude of the velocity 
maximum and to shift its location closer to the wall. 
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1. INTRODUCTION 

FOR THE experimental verification of mass transfer theories, 
the measurement of the local and time-dependent concentra- 
tion distribution within the boundary laye? appears to be 
essential. Probe techniques, however, are for this purpose 
limited to measurements in the gaseous phase. For the very 
thin liquid boundary layers, only optical methods seem 
applicable. Indeed, interference methods have been adapted 
by Lin et al. [l] to a solid-liquid interface and by Jepsen 
et al. [2] to a gas-liquid interface. A great disadvantage of 
the interference method is that the direction of observation 
must be parallel to the boundary surface, and therefore only 
an averaged value along this direction is obtainable. 
Furthermore the boundary surface must be plane. 

2. THEORETICAL BASIS AND 
DESCRIPTION OF THE METHOD 

The use of a pH-indicator offers another possibility of 
neasuring the concentration distribution. This method has 
been adapted to the case of mass transfer from the gas phase 
to a falling film [3, 43. Here the direction of observation is 

perpendicular to the interface and the resolution in direc- 
tions along and perpendicular to the interface is very high. 
The time average of the local concentration distribution 
was evaluated and from this the spatial distribution of the 
effective di~usivity. This gives a detailed picture of turbulent 
mass transfer. 

Mass transport is obviously interrelated with the wave 
formation in the falling film. This calls for an extension of 
the pa-indicator method which would allow to recognize 
the correlation between wave dynamics and transport 
mechanism. A solution to this problem was found in a 
double-ray technique which was originally developed for 
the measurement of con~ntration profiles near a solid 
wall. The method was adapted to the falling him by T. Melin 

c51. 
The new method makes use of the fact that many colour 

indicators-as well as a few fluorescent indicators- 
exhibit one or more so-called isosbestic (isoemissive) points 
(Fig. 1). When gaseous ammonia is absorbed in a falling 
lilm of a diluted strong acid, containing a minute amount 
(about lo-$ moles/l) of the fluorescent indicator acridine, 
two distinct regions are formed (Fig. 2): at the surface an 


